Macrophage-specific NOX2 contributes to the development of lung emphysema through modulation of SIRT1/MMP-9 pathways
نویسندگان
چکیده
Reactive oxygen species (ROS) participate in the pathogenesis of emphysema. Among ROS-producing enzymes, NOX NADPH oxidases are thought to be responsible for tissue injury associated with several lung pathologies. To determine whether NOX2 and/or NOX1 participate in the development of emphysema, their expression patterns were first studied by immunohistochemistry in the lungs of emphysematous patients. Subsequently, we investigated their contribution to elastase-induced emphysema using NOX2- and NOX1-deficient mice. In human lung, NOX2 was mainly detected in macrophages of control and emphysematous lungs, while NOX1 was expressed in alveolar epithelium and bronchial cells. We observed an elevated number of NOX2-positive cells in human emphysematous lungs, as well as increased NOX2 and NOX1 mRNA expression in mouse lungs following elastase exposure. Elastase-induced alveolar airspace enlargement and elastin degradation were prevented in NOX2-deficient mice, but not in NOX1-deficient mice. This protection was independent of inflammation and correlated with reduced ROS production. Concomitantly, an elevation of sirtuin 1 (SIRT1) level and a decrease of matrix metalloproteinase-9 (MMP-9) expression and activity were observed in alveolar macrophages and neutrophils. We addressed the specific role of macrophage-restricted functional NOX2 in elastase-induced lung emphysema using Ncf1 mutant mice and Ncf1 macrophage rescue mice (Ncf1 mutant mice with transgenic expression of Ncf1 only in CD68-positive mononuclear phagocytes; the MN mouse). Compared to WT mice, the lack of functional NOX2 led to decreased elastase-induced ROS production and protected against emphysema. In contrast, ROS production was restored specifically in macrophages from Ncf1 rescue mice and contributes to emphysema. Taken together, our results demonstrate that NOX2 is involved in the pathogenesis of human emphysema and macrophage-specific NOX2 participates in elastase-induced emphysema through the involvement of SIRT1/MMP-9 pathways in mice.
منابع مشابه
SIRT1 redresses the imbalance of tissue inhibitor of matrix metalloproteinase-1 and matrix metalloproteinase-9 in the development of mouse emphysema and human COPD.
Sirtuin1 (SIRT1), a protein/histone deacetylase, protects against the development of pulmonary emphysema. However, the molecular mechanisms underlying this observation remain elusive. The imbalance of tissue inhibitor of matrix metalloproteinases (TIMPs)/matrix metalloproteinases (MMPs) plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD)/emphysema. We hyp...
متن کاملEvaluating the Expression of NOX2 and NOX4 Signaling Pathways in Rats’ Lung Tissues Following Local Chest Irradiation; Modulatory Effect of Melatonin
Lung injury is one of the major concerns for chest cancer patients that undergo radiotherapy as well as persons exposed to an accidental radiological event. Reduction/oxidation (redox) system plays a key role in lung injury via chronic upregulation of pro-oxidant enzymes. NOX2 and NOX4 are two important reactive oxygen species generating enzymes that are involved in radiation toxicity in some o...
متن کاملEndothelin-1 receptor antagonists prevent the development of pulmonary emphysema in rats.
We hypothesised that endothelin (ET)-1 plays an important role in the pathogenesis of emphysema. We attempted to apply ET-1 receptor antagonists to demonstrate and further elucidate the molecular pathogenesis pathways through which ET-1 may cause emphysematous changes. Sprague-Dawley rats were divided into four groups: control, cigarette smoke extract (CSE), CSE+BQ-123 (a selective endothelin r...
متن کاملTransgenic expression of matrix metalloproteinase-9 causes adult-onset emphysema in mice associated with the loss of alveolar elastin.
Matrix metalloproteinase (MMP)-9 has been consistently identified in the lungs of patients with chronic obstructive pulmonary disease (COPD). However, its role in the development of the disease remains undefined. Mice that specifically express human MMP-9 in their macrophages were generated, and morphometric, biochemical, and histological analyses were conducted on the transgenic and littermate...
متن کاملRelease and activity of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 by alveolar macrophages from patients with chronic obstructive pulmonary disease.
Destruction of lung elastin is critical for development of emphysema associated with chronic obstructive pulmonary disease (COPD). Lung macrophages release elastolytic enzymes, including matrix metalloproteinase (MMP)-9, along with tissue inhibitors of MMP (TIMP). We examined the production and activity of macrophage-derived MMP-9 and TIMP-1 from alveolar macrophages (AM) from smokers with COPD...
متن کامل